Learning by Design – The STEAM Model, Part 4

Engineering

Games require a physical structure as much as a linguistic and conceptual one.  The question a designer has to ask is what is the most efficient and economical way to present the game.  Space constraint means designers have to make crucial decisions about what will and will not be included.  Depending on the type of game, this can mean restructuring of rules, board, or conceptual views of the playing pieces may be in order.

Practicality in prototyping sets the hard limits for the initial design and may also dictate the limits when going to finished product.  The technology and science behind the game along with the artistic take influence these decisions and can weigh heavily on how the game is structured in its entirety.  Designers have choices to make here that have huge ramifications on multiple levels.  The most noticeable is the visual appeal of the game, but it is not the only one.

The science and engineering work to create the interface through which the players can engage with the game.  The design has an aesthetic component to it, but the challenges in structure are prevalent as the aesthetics are merely the skin dressing the intersection of the science and engineering.  The technology also has to endure the usage it will undergo. Here, engineering is often employed in its most common form alongside asset management (space and component).

Another aspect of game design that falls in the realm of engineering is systems knowledge.  Each game has a system to which all components belong.  The taxonomy used provides the mechanism by which information can be structured, but the exact methods and presentation are governed by this aspect of STEAM.  Knowing the categories goes a long way towards implementation, but it requires a sense of construction to get the diverse parts to interlock in a smooth system without feeling mechanical.

Thus, from a design perspective, engineering is the second most visible element of game creation.  The various applications of engineering to the game’s design make it critical.  A good analogy for refining the structure until it works as intended is like herding cats.  Every element threatens to go off in its own direction as a result of the disparate nature of the elements forced to co-exist in the play space.  This last is where the next element comes into play.

Previous

Learning by Design – The STEAM Model, Part 3

Next

Learning by Design – The STEAM Model, Part 5

Leave a Reply

Your email address will not be published. Required fields are marked *